6x^2-175+x^2=8(x^2-50)

Simple and best practice solution for 6x^2-175+x^2=8(x^2-50) equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 6x^2-175+x^2=8(x^2-50) equation:



6x^2-175+x^2=8(x^2-50)
We move all terms to the left:
6x^2-175+x^2-(8(x^2-50))=0
We add all the numbers together, and all the variables
7x^2-(8(x^2-50))-175=0
We calculate terms in parentheses: -(8(x^2-50)), so:
8(x^2-50)
We multiply parentheses
8x^2-400
Back to the equation:
-(8x^2-400)
We get rid of parentheses
7x^2-8x^2+400-175=0
We add all the numbers together, and all the variables
-1x^2+225=0
a = -1; b = 0; c = +225;
Δ = b2-4ac
Δ = 02-4·(-1)·225
Δ = 900
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

$\sqrt{\Delta}=\sqrt{900}=30$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-30}{2*-1}=\frac{-30}{-2} =+15 $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+30}{2*-1}=\frac{30}{-2} =-15 $

See similar equations:

| -24=7(w-3)-4w | | 9=b/2+7 | | 3=v/2+1 | | 11=7x=6-2x | | 0,5(1+x)=7 | | -2r+-5=3 | | x-8.8=-6.7 | | x-8.8=6.7 | | 2x+5x-5=37 | | 3/8=-1/2+m | | 11y=2y+27 | | 2x+5x-5=36 | | 24=6y+6(y-8) | | 3/5=w/10 | | n/3-4=-1 | | 4-3m=16 | | 4x−3=3x+9 | | 24=18-y | | 14w=24+6w | | 1+0.8z^-1+0.8z^-2=0 | | x+(-2.8)+9.2=0 | | 18=4+31t-16t2 | | -u+100=245 | | 2=2j-6 | | 4v=21+v | | 33y+237=75y | | 3x+4(2x-5)=-10 | | 9(x+6)+2x=x+14 | | 10=6-2p | | 3/4a-9=6 | | 86-u=174 | | 5x+9=−3x+1 |

Equations solver categories